
Cancer is a collection of diseases that are 
characterized by misregulation of the bio-
molecular pathways that control cellular 
processes of metabolism and growth, DNA 
replication and repair, mitosis and cell divi-
sion, autophagy and apoptosis (programmed 
cell death), de-differentiation, motility and 
angiogenesis1. Molecular cell biologists have 
amassed a large body of information about 
the genes and proteins involved in these 
pathways and have some good ideas about 
how they go awry in certain types of cancers. 
However, most of our understanding of the 
molecular basis of cancer relies on intuitive 
reasoning about highly complex networks 
of biochemical interactions2–4. Intuition is 
clearly not the most reliable tool for query-
ing the behaviour of complex regulatory 
networks. Would it not be better if we could 
frame a reaction network in precise math-
ematical terms and use computer simula-
tions to work out the implications of how 
the network functions in normal cells and 
malfunctions in cancer cells?

Of primary interest to cancer biologists 
is how cancer cells differ from normal cells 
in their responses to endogenous signals 
(such as growth and death factors, cell–cell 
and cell–matrix contacts) and to exogenous 
treatments (including cytotoxic radiation and 
endocrine therapies). Cell responses — such 
as signal transduction, cell-fate decisions and 
adaptation — are intrinsically dynamic phe-
nomena, so it is essential to understand the 
temporal evolution of biochemical signalling 
networks in response to particular stimuli. 
Ordinary differential equations (ODEs), 

which are based on biochemical reaction 
kinetics, are an appropriate tool for address-
ing these questions. In principle, ODE mod-
els can provide a comprehensive, unified 
account of many experimental results, and 
they are a reliable tool for predicting novel 
cell behaviours. ODE models of yeast cell 
growth and division have lived up to these 
expectations5–8. But is it possible to build 
useful models of the considerably more 
complex regulatory networks in mammalian 
cells? We intend, in this article, to provide a 
roadmap for a detailed mathematical model 
of the oestrogen signalling network in breast 
epithelial cells.

Our roadmap is built on the idea that a 
cell is an information processing system: it 
receives signals from its environment and its 
own internal state, interprets these signals 
and makes appropriate cell-fate decisions, 
such as growth and division, movement,  
differentiation, self-replication or cell death9. 
In plants and animals, these cell-level deci-
sions are crucial to the growth, development, 
survival and reproduction of the organism. 
A hallmark of cancer cells is faulty decision-
making: they proliferate when they should 
be quiescent, they survive when they  
should die, and they move around when 
they should stay put1. To understand the  
origin, pathology and vulnerabilities of 
cancer cells, we must understand how nor-
mal cells make decisions that promote the 
survival of the organism as a whole and how 
cancer cells make decisions that promote 
their own survival and reproduction with 
fatal results for the organism they inhabit10.

Viewing the living cell as an information 
processing system, we can (conceptually, at 
least) distinguish an input level, a processing 
core and output devices (FIG. 1). As input, a 
cell receives information from its surround-
ings (such as extracellular ligands that  
bind to cell-surface receptors or to nuclear  
hormone receptors) and from its internal 
state (such as DNA damage, misfolded pro-
teins, low energy level and oxidative stress). 
These signals are processed by chemical 
reaction networks that integrate information 
from many sources and compute a response.  
A response could take the form of the  
activation or inactivation of key integrator 
or effector proteins that drive the cell’s func-
tional output devices. Of most interest  
to cancer biologists are the functional  
modules that control cell growth and divi-
sion, motility and invasion, stress responses 
and apoptosis.

Although there may be many ways to 
subdivide the information processing system 
of a cell, there is clearly a need to divide and 
conquer the staggering complexity of the 
system11–13. Fortunately, it is not necessary to 
model the protein reaction networks in all 
their complexity because it is usually pos-
sible to identify a set of key ‘integrator’ and 
‘decision-making’ proteins that determine the 
cell’s response to input signals. Unfortunately, 
living cells are not like human-engineered 
systems, in which modules are designed 
not to interfere much with one another14. 
Cellular modules have considerable crosstalk 
and several shared components. So although 
we must divide the system into modules to 
reduce the initial modelling complexity, we 
must also put the modules back together 
into a complete system that properly cap-
tures the information processing capabilities 
of living cells.

A comprehensive model of the informa-
tion processing system of mammalian cells 
is not yet available, but we can provide a 
roadmap of how a modeller might capture, 
in mathematical form, the molecular events 
controlling cell growth, proliferation,  
damage responses and programmed death. 
Our approach is illustrated by simple math-
ematical models of the mechanisms involved 
in the initial susceptibility of breast cancer 
cells to anti-oestrogen therapy and their 
subsequent development of anti-oestrogen 
resistance. The value of this enterprise will 
be measured ultimately by new insights  
provided by the model into the logic and 
functionality of oestrogen receptor (ER)  
signalling pathways and by the effectiveness 
of the model as a tool for experimental  
prediction and design.
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Abstract | Cancers of the breast and other tissues arise from aberrant decision- 
making by cells regarding their survival or death, proliferation or quiescence, 
damage repair or bypass. These decisions are made by molecular signalling 
networks that process information from outside and from within the breast cancer 
cell and initiate responses that determine the cell’s survival and reproduction. 
Because the molecular logic of these circuits is difficult to comprehend by intuitive 
reasoning alone, we present some preliminary mathematical models of the basic 
decision circuits in breast cancer cells that may aid our understanding of their 
susceptibility or resistance to endocrine therapy.
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The oestrogen receptor and breast cancer
The growth and proliferation of breast tissue 
is normally responsive to oestrogen — a 
steroid hormone that binds to and activates 
ERα and ERβ, which are nuclear transcrip-
tion factors that regulate the expression 
of genes that orchestrate survival and 
proliferation. In many neoplastic breast 
cells, the ER signalling network contrib-
utes to controlling the relative rates of 
cell proliferation and programmed cell 
death, with pro-survival and prolifera-
tion signals overwhelming pro-death and 
quiescence signals.

Of the 180,000 cases of invasive breast 
cancer newly diagnosed each year in the 
United States, more than 70% express ERα 
(ER+ cells)15. Many of these tumours are ini-
tially responsive to endocrine therapy alone, 
and many also respond to a combination 
of cytotoxic chemotherapies16,17. Endocrine 
therapy can consist of anti-oestrogens (such 
as tamoxifen or fulvestrant), which bind 
to and neutralize ER, and/or aromatase 
inhibitors (such as letrozole or exemestane), 

which block the synthesis of oestrogen. 
Unfortunately, many ER+ tumours recur as 
incurable, endocrine-resistant cancer cells18.

The advantages and limitations of endo-
crine therapies have been known for over 
30 years. To make substantial new advances 
in the treatment of advanced breast cancer, 
we need a better understanding of the ER 
signalling network19. For example, how does 
ER signalling function in normal breast 
cells? How does it malfunction in ER+ breast 
cancer cells that respond to endocrine 
therapy? How is it further misregulated 
in anti-oestrogen-resistant and aromatase 
inhibitor-resistant cancer cells? And how are 
cell survival and proliferation maintained in 
ER− cancer cells?

FIGURE 1 provides an overview of the ER 
signalling network and its major output 
devices (cell growth and division, apop
tosis and autophagy). From a combination 
of classical molecular biology studies and 
high-throughput transcriptomic analyses, 
we identified an initial set of transcrip-
tion factors that are intimately connected 

with ER signalling in breast cancer cell 
lines20. Subsequently, we and others have 
established the functional relevance of 
several of these factors, including nuclear 
factor-κB (NF-κB), a pro-survival tran-
scription factor that is highly expressed 
in hormone-resistant cells compared to 
hormone-sensitive cells21–23; interferon  
regulatory factor 1 (IRF1), a pro-death  
transcription factor that is downregulated  
in endocrine-resistant cells24–27; and  
X-box-binding protein 1 (XBP1), a tran-
scription factor that is involved in the 
unfolded protein response (UPR) and the 
induction of autophagy and is highly 
expressed in its active (spliced) variant in 
endocrine-resistant cells27,28. Given that 
FIG. 1 correctly captures some of the key 
regulatory components and their interac-
tions, interpreting it at a mathematical level 
should provide novel and useful insights 
into the decision-making processes in normal 
and transformed breast epithelial cells.

Mathematical modelling perspective
As useful as FIG. 1 is for providing a guide to 
intuitive reasoning about the probable effects 
of perturbations to this network, a molecular 
interaction graph can deliver much more 
information about the potential dynamic 
behaviour of the control system if it is trans-
lated into reasonable mathematical terms 
that are suitable for computer simulation.  
In that case, the computer can keep track of 
the dynamic consequences of multiple and 
often conflicting interactions29,30.

In keeping with our roadmap perspec-
tive, we will begin by modelling the separate 
modules in FIG. 1: the ‘decision modules’  
(cell cycle and apoptosis), the ‘stress mod-
ules’ (autophagy and the UPR) and the 
‘signal processing modules’ (ER and growth 
factor signal transduction networks). As we 
go, we will describe how the ‘integrator and 
effector proteins’ mediate communication 
among these modules.

Cell cycle module
We start with the module controlling DNA 
replication and division, events that are 
triggered by cyclins and cyclin-dependent 
kinases (CDKs)31,32, RB (which regulates 
members of the E2F family of transcription 
factors (hereafter referred to collectively as 
E2F)) and late‑G1- and early‑S-phase cyclins 
(type A and E cyclins)33–35. RB also downregu-
lates the expression of ribosomal RNA genes, 
thereby inhibiting the production of new 
ribosomes and the cell’s capacity for increased 
protein synthesis34,36–39. Hence, we can think 
of RB as a major ‘brake’ on cell growth and 

Figure 1 | The oestrogen receptor signalling network in breast epithelial cells. Extracellular 
signals, such as oestrogen (E2), growth factors (GF), survival factors (SF), cytokines (Cyto) and extra
cellular matrix (ECM), bind to receptor proteins, which initiate a complex series of chemical reactions 
within the cell, culminating ultimately in the activation of a set of integrator and effector proteins. 
These proteins process the positive and negative signals coming from the information processing 
units and then drive responses in the downstream decision modules and stress modules. The ‘cell 
cycle module’ coordinates DNA synthesis and mitotic cell division with cell growth and the body’s 
need for a continuous supply of new cells in the right place at the right time. The ‘apoptosis module’ 
rids the body of damaged, worn out or unneeded cells. The ‘unfolded protein response (UPR)  
module’ is a response to stresses such as starvation and reactive oxygen species. Under conditions 
of extreme stress, the ‘autophagy module’ can provide the cell with a supply of energy and raw mate-
rials. Tamoxifen and fulvestrant are inhibitors of oestrogen receptor-α (ERα), and they are commonly 
used to kill oestrogen-dependent breast cancer cells. BECN1, beclin 1; Chap, chaperone;  
CycD, cyclin D; CycE, cyclin E; DAPK, death associated protein kinase; GFR, growth factor receptor; 
IP3R, inositol 1,4,5‑triphosphate receptor; IRE1, inositol-requiring protein 1 (also known as ERN1); 
JNK, JUN N‑terminal kinase; UP, unfolded protein; XBP1, X-box-binding protein 1.
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division that must be released before a cell 
can grow and divide. This release is the job of 
the cyclin D‑dependent kinases (cyclin D1, 
cyclin D2 and cyclin D3 (hereafter collectively 
referred to as cyclin D) in combination with 
CDK4 or CDK6), which phosphorylate RB 
and reduce its inhibitory effect on E2F33,40. 
Cyclin D1 is an unstable protein, and it is not 
present in quiescent cells because its tran-
scription regulators, including MYC, activator 
protein 1 (AP1) and β‑catenin, are inactive. 
These transcription regulators are activated 
by proliferative signals, such as growth fac-
tors, cytokines, nuclear hormone receptors 
and integrins, causing the concentration of 
cyclin D to rise. The increasing concentration 
of cyclin D must be converted into a digital 
decision: shall the cell undergo a new round 
of DNA replication and division or remain in 
G1 phase?

This decision is apparently made by 
a bistable switch, which is created by the 
interaction among RB, E2F and cyclin E41,42. 
The molecular interactions among these 
three proteins (FIG. 2a) are characterized by 
a positive feedback loop (E2F upregulates 
cyclin E, cyclin E–CDK2 inactivates RB, and 
RB inactivates E2F) and an autoactivation 
loop (E2F family members can activate their 
own transcription). According to math-
ematical models (REF. 41 and Supplementary 
information S1 (text)), these sorts of posi-
tive feedback loops create a signal–response 
curve (FIG. 2b) with alternative stable steady 
states: an OFF state (RB active, E2F low and  

cyclin E low), and an ON state (RB inactive, 
E2F high and cyclin E high). The OFF state 
corresponds to quiescent cells (arrested in 
G1 phase of the cell cycle) and the ON state 
corresponds to proliferating cells (progres-
sion through S, G2 and M phases)43. Careful 
measurements of the expression of cyclin D 
and E2F in fibroblast cells responding to 
changes in serum concentration confirm the 
predictions of the model41 (FIG. 2c,d). Entry 
into the mammalian cell cycle in these non-
cancerous cells is controlled by a bistable 
switch that is biased to the OFF state by 
signals that downregulate cyclin D and E2F 
(and possibly by signals that upregulate 
RB), and that is switched ON by signals 
that upregulate cyclin D and E2F (see 
Supplementary information S1 (text) for 
further information). Although this crucial 
decision point still seems to be intact44 in 
many ER+ breast cancer cells, it is likely that 
in many cancers the bistable switch is  
disrupted by mutations that break the 
underlying feedback circuits45.

Cyclin D as a key signal integrator. Cyclin D 
is a classic integrator and effector pro-
tein: its level integrates the prolifera-
tive and antiproliferative signals being 
received by the cell, and the activity of 
cyclin D‑dependent kinases affects the 
commitment of the cell to a new round 
of DNA synthesis and cell division. Pro-
proliferative signals, such as oestrogen 
acting through ERα, increase cyclin D 

expression by activating its transcription 
factors. By contrast, cell–cell contacts 
result in cytoplasmic sequestration of 
β‑catenin and downregulation of cyclin D 
expression. One of the hallmarks of many 
cancers is the loss of contact inhibition.  
A different mode of action is exemplified 
by the antiproliferation factor transforming 
growth factor-β (TGFβ), which upregulates 
synthesis of p27 (also known as KIP1 and 
CDKN1B), an inhibitor of cyclin D‑ 
dependent kinases. In breast cancer cells, 
TGFβ is a key regulator of the antiprolif-
erative effects of anti-oestrogens46,47, and 
cyclin D gene expression is associated with 
poor response to tamoxifen48. In summary, 
we might think of cyclin D levels as a  
rheostat that varies up and down continu-
ously in response to proliferative and anti-
proliferative signals, respectively41,43. When 
cyclin D levels exceed a certain threshold, 
the RB–E2F–cyclin E switch converts the 
cyclin D signal into a discrete decision 
to begin a new round of DNA synthesis 
and cell division. Triggering this switch is 
therefore dependent on many factors that 
affect the level of active cyclin D, such as 
oestrogen, β‑catenin, p27 and TGFβ49,50.

After a cell has committed to the G1–S 
transition, it will proceed through the S, 
G2 and M phases, even if the proliferative 
signals are removed and cyclin D disap-
pears. However, when this cell divides and 
the other classes of cyclins (A, B and E) are 
degraded, RB will return and arrest the cell 
in a quiescent state.

Apoptosis module
Like the decision to enter a new round 
of mitotic cell division, the commitment 
to apoptosis must reach an all-or-none 
decision point that is biased one way or 
the other by the summation of pro-death 
and pro-survival signals. Although the 
evidence is not conclusive, we believe that 
the irrevocable commitment to apoptosis 
is normally made in the activation of BAX 
and amplified by mitochondrial outer-
membrane permeabilization (MOMP)51. 
In our mathematical models, MOMP is 
governed by a bistable switch involving 
three families of proteins: BCL‑2‑like, 
BH3‑only and BAX-like proteins52–57 
(FIG. 3a). In the OFF state, BAX is inacti-
vated by binding to BCL‑2. Accumulation 
of BH3 proteins can displace BCL‑2 
from BAX, leading to the self-amplifying 
activation of BAX (the ON state). Active 
BAX proteins create pores in the mito-
chondrial outer membrane, thereby 
releasing cytochrome c and second 

Glossary

Autophagy
Degradation of a cell’s own components, using its lysosomal 
machinery, to remove damaged organelles and/or to 
provide energy and raw materials for adaptation and 
survival under stressful conditions.

Bistable switch
A regulatory network that can persist, under identical 
external conditions, in either of two stable states (‘ON’ or 
‘OFF’) depending on its recent history.

Crosstalk
Interactions among modules that alter the behaviour of the 
modules in isolation.

Dynamic behaviour
The characteristic change over time of a molecular 
regulatory network in response to a specific pattern of 
input signals.

Modules
A set of molecular interactions that accomplishes a specific 
task in a cell, such as committing a cell to a new round of 
DNA replication.

Molecular interaction graph
A representation of a set of biochemical reactions involving 
co-regulated genes and proteins; for example, a signal 

transduction pathway or a transcription factor network. 
Also referred to as a ‘wiring diagram’.

Plasticity
The ability of a regulatory network, in the face of 
interference or damage, to adapt and maintain something 
akin to its normal function.

Rheostat
A variable resistor, used to provide continuous control over 
the current through a circuit (for example, the dimmer knob 
on a light fixture).

Signal–response curve
The functional dependence of the output of a molecular 
regulatory network (for example, the activity of a 
transcription factor) on changing values of its input (for 
example, concentration of a growth factor in the 
extracellular medium).

Stochastic fluctuations
Random variations in the numbers of molecules of mRNAs 
and proteins due to the unpredictable nature of chemical 
reactions at the molecular level.

Unfolded protein response
The cellular response to the accumulation of misfolded 
proteins in the endoplasmic reticulum.
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mitochondria-derived activator of caspase 
(SMAC; also known as DIABLO) to the 
cytoplasm, where cytochrome c promotes 
activation of ‘executioner’ caspases and 
SMAC neutralizes the inhibitor of apoptosis 
(IAP) proteins that inhibit caspases55.

Based on our models (FIG. 3 and 
Supplementary information S2 (text)), the 
apoptosis switch is in the OFF or ON posi-
tion depending on the balance between 
BCL‑2‑like proteins (the ‘brakes’) and 
BH3‑only proteins (the ‘accelerators’). When 
the ratio of accelerators to brakes exceeds 
a certain critical value (the point in FIG. 3b 
where the OFF state disappears), then BAX 
is abruptly activated and MOMP-induced 
activation of executioner caspases ensues. 
The ‘snap-action’ kinetics of MOMP are 
consistent with this view of a bistable switch 
activating BAX proteins (FIG. 3c).

The question of whether apoptosis is 
controlled by a bistable ‘decision’ module 
has generated considerable discussion, and 
the biochemical basis of such a module 
remains open to debate51,53–56,58–62. These 
contradictory viewpoints show that fun-
damentally different mathematical models 
may be equally consistent with limited 
experimental data. Fortunately, the differ-
ent models can be used to design additional 
experiments that will distinguish between 
alternative mechanisms. We suppose that 
apoptosis is governed by a one-way (irre-
versible) bistable switch because apoptosis 
in normal cells is an all-or-nothing affair. 
We interpret the evidence to suggest that 
the decision is made upstream of MOMP 
and that the BH3–BCL‑2–BAX module is 
the most likely locus for the bistable switch. 
Although the apoptotic switch may be disa-
bled in some cancer cells, it is likely to still be 
functional in most cancers but more difficult 
to engage. For instance, in breast cancer cell 
lines, ER‑mediated signalling upregulates 
anti-apoptotic proteins, including BCL‑2 
(REFS 23,63,64), BCL‑W (also known as 
BCL‑2‑like protein 2)64 and BCL‑3 (REF. 65), 
making it harder to trigger apoptosis. 
Endocrine therapy, by inactivating the ER, 
moves these levels in the opposite direction, 
making it easier to trigger apoptosis.

Damage-processing modules
Intracellular damage-processing modules 
have crucial roles in maintaining the viability 
of cells and organisms. For example, DNA 
damage activates kinases that phosphorylate 
and stabilize the transcription factor p53  
(REF. 66). p53 upregulates genes encoding 
repair enzymes and p21 (also known as CIP1 
and CDKN1A), which binds to and inhibits 

Figure 2 | Bistable switch controlling the G1‑to‑S phase transition in mammalian cells.  
a | ‘Wiring’ diagram for the bistable switch for G1‑to‑S phase transition. Cyclin E (CycE)-cyclin-
dependent kinase complex promotes the transition of mammalian cells from the G1 phase of the cell 
cycle into the S phase. Quiescent cells are arrested in G1 by RB, which binds to and inhibits E2F, a 
family of transcription factors, some of which can promote cyclin E gene expression. Phosphorylation 
of RB by cyclin-dependent kinases compromises its inhibitory effect on E2Fs. The initial phosphoryla-
tion of RB is accomplished by cyclin D (CycD)-cyclin-dependent kinase complex. After the G1–S 
phase transition is made, RB is maintained in its inactive (phosphorylated) form by cyclin E and by 
cyclin A‑ and B‑dependent kinases that are active in the S, G and M phases (not shown). Quiescent 
cells, which have only small amounts of cyclin D, can be induced to proliferate by transcription factors 
(such as MYC, FOS and JUN) that are upregulated by growth factors in serum. These transcription 
factors promote the expression of both cyclin D and E2F genes, and E2F proteins upregulate their 
own transcription. b | Signal–response curves for E2F transcription factors and cyclin D. The wiring 
diagram in panel a is converted into a set of nonlinear differential equations (Supplementary informa-
tion S1 (text)), and the steady-state levels of cyclin D and E2F are plotted as functions of serum con-
centration in the growth medium. Although cyclin D levels increase smoothly with serum 
concentration (and therefore act as a ‘rheostat’), the E2F distribution exhibits a bimodal dependence 
on serum concentration (and therefore acts as a ‘toggle switch’)41,43. c,d | Experimental verification 
in rat embryonic fibroblasts (REF52 cells)41. Blue curves: serum concentration is raised from 0 to a final 
serum percentage. Green curves: serum concentration is raised to 20% for 5 hours, then lowered to 
a final serum percentage. The production of green fluorescent protein (GFP) is driven by an E2F gene 
promoter (left) or a cyclin D gene promoter (right). GFP fluorescence (FLU) measures the activities of 
these two promoters. Histograms of cyclin D gene expression shift smoothly up and down with the 
final serum percentage. E2F histograms show a bimodal dependence of gene expression on the final 
serum percentage between ~0.2% and 2%. There is a distinct hysteresis effect in the E2F response: 
on shifting serum levels up (blue curves), bistability is not observed until the serum level exceeds ~1%, 
but on shifting serum levels down (green curves) after cells have adapted to 20% serum, bistability is 
maintained to serum levels <0.2%. Parts c and d are reproduced, with permission, from REF. 41 © 
(2008) Macmillan Publishers Ltd. All rights reserved.
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the activity of CDKs, thereby preventing the 
damaged cell from beginning a new round 
of DNA replication. DNA damage also 
prevents S‑ or G2‑phase cells from entering 
mitosis by pathways involving inhibitory 
phosphorylation of CDKs and the produc-
tion of stoichiometric CDK inhibitors. If 
the damage cannot be repaired in a timely 
fashion, p53 upregulates production of BH3 
proteins in an attempt to activate the apopto-
sis module. Whether apoptosis occurs or not 
depends on the levels of BH3 proteins relative 
to the levels of BCL‑2 like proteins, thereby 
integrating the influences of apoptotic and 
anti-apoptotic agents, including ER‑mediated 

signals. Effective mathematical models of 
these DNA-damage-processing pathways, 
based on the cell-proliferation and cell-death 
networks described in FIGS 2,3, have been 
published52,55,66,67.

Other common inducers of stress in 
normal and cancer cells include hypoxia 
and oxidative stress68,69. These types of stress 
cause problems in intermediary metabolism, 
electron transport in mitochondria and pro-
tein folding in the endoplasmic reticulum, 
and these problems induce characteristic 
responses by the cell. The first response to 
low-level stress is a survival mechanism, 
autophagy, which is thought to provide a 

steady supply of energy and raw materials  
by degrading the cell’s own proteins and 
lipids70. Unremitting stress can lead to cell 
death, either by excessive autophagy or by  
activation of apoptosis71.

Autophagy module. The autophagosome is 
a subcellular organelle containing a selec-
tion of cellular proteins and other macro-
molecules that are destined for destruction. 
When the autophagosome fuses with a lyso-
some, its contents are hydrolysed to amino 
acids and other small metabolites that can be 
used by the cell as sources of energy and raw 
materials for the biosynthesis of essential 
substances. Autophagy is controlled in large 
part by beclin 1 (BECN1), a myosin-like, 
BCL‑2‑interacting protein. When not bound 
to BCL‑2, BECN1 participates in a multi
protein complex that initiates the earliest 
stages of autophagosome assembly70–72.

In FIG. 4 we propose a simple model for 
the initiation of autophagy (for details, see 
Supplementary information S3 (text)). In this 
model, autophagy is regulated not as a toggle 
switch (as in FIGS 2,3) but as a rheostat; the 
levels of autophagy increase smoothly as stress 
increases. As autophagy increases, BCL‑2 is 
released from its association with BECN1 and 
with the inositol 1,4,5‑trisphosphate recep-
tor (IP3R). The results can be variable and 
include survival (moderate autophagy and 
inhibition of apoptosis), apoptotic cell death or 
autophagic cell death. Whether the autophagic 
response is functioning normally or abnorm
ally in breast cancer cell lines is a matter of 
current investigation.

The UPR module. The accumulation of 
unfolded proteins in the endoplasmic 
reticulum causes a characteristic response73 
that is intended to relieve the immediate 
problem (by re-folding or degrading the 
non-functional proteins and reducing 
the rate of protein synthesis) and to deal 
with the underlying stress (by inducing 
autophagy). The molecular basis of the 
UPR is well understood, and useful mathe
matical models have been presented in the 
literature73–76. In FIG. 5 and Supplementary 
information S4 (text), we present a sim-
plified model of the UPR to illustrate the 
basic principles of this damage-response 
module. Both autophagy and the UPR are 
strongly implicated in the responsiveness 
of breast cancer cells to anti-oestrogens19,77.

Signalling crosstalk between modules
To impose some order on the tangled web 
of macromolecular interactions within a 
living cell, it is necessary to think in terms 

Figure 3 | Bistable switch controlling apoptosis in mammalian cells. a | ‘Wiring’ diagram for the 
bistable switch controlling apoptosis. Programmed cell death is triggered by activation of BAX pro-
teins in the outer membrane of mitochondria. Active BAX causes the membrane to become permeable 
to proteins, such as cytochrome c and second mitochondria-derived activator of caspase (SMAC; also 
known as DIABLO), which induce the activation of proteases (caspases) and other hydrolytic enzymes 
that disassemble the macromolecules of the cell. BAX is activated by BH3‑only family proteins and 
kept inactive by binding to BCL‑2‑family proteins. BH3 proteins also bind to BCL‑2-family proteins55. 
b | Signal–response curve. A mathematical model of the wiring diagram is presented in Supplementary 
information S2 (text). Top: steady-state concentration (blue curve) of total membrane-bound BAX, 
[BAXm]

T
 = [BAXm] + [BAXm–BCL‑2], as a function of [Stress]. For intermediate levels of stress, the net-

work has two stable steady states: an OFF state with a low total level of BAXm, all of it in complex with 
BCL‑2 (that is, [BAXm] ≈ 0); and an ON state with a high total level of BAXm, most of it not in complex 
with BCL‑2 (that is, [BAXm] ≈ [BAXm]

T
). Bottom: time course of active BAX. Each simulation is started 

in the naive state: no stress, low level of BH3, [BAXm] ≈ 0. At t = 0, [Stress] is raised to a final value that 
varies (from one simulation to the next) from 0.55 to 0.95. The time course for final [Stress] = 0.95 is 
plotted as the green curve on the upper graph. Notice that, in each simulation, there is a long lag time 
followed by an abrupt activation of BAX (and subsequently an irreversible activation of caspases). The 
duration of the lag phase is a decreasing function of [Stress]. c | Experimental verification in HeLa cells 
(cervical cancer cell line)51. Top: cells are treated with 50 ng ml–1 tumour necrosis factor-related  
apoptosis-inducing ligand (TRAIL) and assayed for caspase activity by cleavage of an artificial substrate 
manufactured by the cell. Cells with high caspase activity are pseudo-coloured yellow. There is a long 
lag time before caspases are activated in any cells, then individual cells activate caspases abruptly, but 
there is a wide dispersion of activation times among cells. Bottom: traces of caspase activity in single 
cells activated by different concentrations of TRAIL. Part c is reproduced from REF. 51.

P E R S P E C T I V E S

NATURE REVIEWS | CANCER	  VOLUME 11 | JULY 2011 | 527

© 2011 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/nrc/journal/v11/n7/suppinfo/nrc3081.html
http://www.nature.com/nrc/journal/v11/n7/suppinfo/nrc3081.html
http://www.nature.com/nrc/journal/v11/n7/suppinfo/nrc3081.html


Nature Reviews | Cancer

a b

c

Unattached
cells

STP IP3R Ca2+
cyto

ApoptosisBCL-2JNKIRE1

Stress DAPK BECN1

LC3

Autophagy

Days

Fr
ac

ti
on

 o
f a

ut
op

ha
gi

c 
ce

lls

0
0

1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Days
0

0
1 2 3 4 5 6 7

10

20

30

40

50

60

70

80

%
 M

D
C

-p
os

it
iv

e 
ce

lls

10% FCS

3% charcoal-stripped FCS

3% charcoal-stripped FCS and 
tamoxifen adherent cells

3% charcoal-stripped FCS and 
tamoxifen non-adherent cells

of functional modules. Nonetheless, we 
must take into account that there is sub-
stantial crosstalk between modules, such 
as the apparent mutual inhibition between 
autophagy and apoptosis71. Crosstalk 
between signal transduction pathways is 
well known; for example, overlapping cell 
survival pathways are implicated in the 
notorious plasticity of cells in response 

to cancer chemotherapeutics, including 
endocrine therapies49,78–80. Understanding 
the mechanisms and roles of crosstalk is a 
crucial concern as we try to assemble mod-
ules into more complex networks that can 
account for the complex responses of cells 
under realistic conditions, including the 
development of drug resistance in breast 
cancer cells.

As an example, consider the epidermal 
growth factor (EGF) family of signalling 
pathways. A growing body of evidence dem-
onstrates that endocrine therapy, which is 
often effective in regression of early-stage 
ER+ breast cancer, may provoke cellular 
adaptation processes; these processes include 
the activation of a range of oestrogen-
suppressed survival and proliferation genes, 
such as those involved in EGF signalling81–86. 
Interestingly, MCF‑7 cells can be divided 
into two subgroups after the withdrawal of 
oestrogen65: most cells retain an absolute 
dependency on oestrogen and die as a result 
of the treatment, but some cells become  
oestrogen-independent by switching to 
alternative survival and proliferation signals. 
If endocrine treatment is discontinued within 
a short period of time, before the resistant 
cells have established their phenotype by 
genetic or epigenetic modifications87–89, then 
the acquired resistance can be reversed. For 
example, a population of MCF‑7 cells that 
overexpress the EGF receptor (EGFR) or 
ERBB2 exhibit a bimodal distribution of 
receptors (FIG. 6c), and this distribution 
pattern can be reversibly controlled by 
manipulating the exposure of the cells to 
oestrogen87,88. We take these observations as 
evidence for a bistable survival switch that 
works through crosstalk between ER and 
EGF signalling pathways. Although little is 
known about how it works, mutual inhibi-
tion between these two pathways is likely 
to be a source of bistability. In FIG. 6 and 
Supplementary information S5 (text) we 
present a simple model that could account 
for the effects of oestrogen withdrawal on 
MCF‑7 cells.

Crosstalk in cell signalling networks gen-
erates a large selection of discrete, stable and 
self-organized states; this creates a degree  
of cell-fate plasticity, which is necessary for a 
cell to switch adaptively and robustly among 
these different states. Although this plastic-
ity is essential for normal cells to survive in 
noisy environments and to differentiate prop-
erly in response to various developmental 
cues, it may lead to robust development 
of resistance to cytotoxic drugs. Hence, 
understanding how crosstalk controls these 
phenotypic switches is of utmost impor-
tance for designing more effective cancer 
treatment strategies.

Present realities and future directions
Mathematical modelling of intracellular 
molecular regulatory networks is an essen-
tial part of a systems approach to cancer 
biology90. Intuitive reasoning must be com-
plemented by mathematical models when 

Figure 4 | The interplay between autophagy and apoptosis. a | ‘Wiring’ diagram for interplay 
between autophagy and apoptosis. In response to stress, both beclin 1 (BECN1) and BCL‑2 are phos-
phorylated, causing the BCL‑2–BECN1 complex to dissociate103,104. BECN1 is phosphorylated by death-
associated protein kinase (DAPK), and BCL‑2 is phosphorylated by JUN N-terminal kinase (JNK), a 
downstream target of the inositol-requiring protein 1 (IRE1; also known as ERN1) arm of the unfolded 
protein response (UPR)75,103,104. Detachment from the extracellular matrix provides an additional stress 
to the cells105, which is transmitted to JNK by a signal transduction pathway (STP). Free BECN1 
participates with other components, such as microtubule-associated protein 1 light chain 3α  
(LC3; also known as MAP1LC3A and ATG8), in initiating autophagy71. Autophagy can suppress the 
stress signal by providing the cell with ATP and raw materials for new protein synthesis. BCL‑2 phos-
phorylation also allows the inositol 1,4,5‑trisphosphate receptor (IP3R) to release calcium from the 
endoplasmic reticulum to the cytoplasm103,106. If the concentration of calcium in the cytoplasm gets 
large enough, apoptosis is triggered106. Activated caspases cleave BECN1 and turn off autophagy107. 
Hence, under low stress conditions, autophagy promotes cell survival; at moderate stress, it may lead 
to autophagic cell death; and under conditions of high cellular stress, calcium release may stimulate 
apoptosis by the intrinsic (mitochondrial) pathway. b | Numerical simulations of interplay between 
autophagy and apoptosis. The wiring diagram is converted into a set of ordinary differential equations 
(Supplementary information S3 (text)), and the fraction of cells predicted to stain positive for 
autophagic vesicles is plotted as a function of time. The light blue curve shows detached cells under 
high stress, the green curve shows adherent cells under moderate stress and the blue curve shows 
detached cells with no stress. c | Experimental evidence in MCF‑7 cells (breast cancer cell line)105. The 
percentage of cells that took up monodansylcadaverine (MDC) into autophagic vacuoles on days 1–7 
was analysed. Non-adherent cells in 10% fetal calf serum (FCS) underwent autophagy by day 6. Non-
adherent cells in the absence of oestrogen (3% charcoal-stripped FCS) undergo autophagy by day 4. 
Cells in 3% charcoal-stripped FCS with tamoxifen to inhibit oestrogen receptor function  
undergo autophagy by day 4. Non-adherent cells in 3% charcoal-stripped FCS with tamoxifen undergo 
autophagy by day 2. Ca2+

cyto
, Ca2+ in the cytoplasm. Part c is reproduced, with permission, from REF. 105 

© (2007) Macmillan Publishers Ltd. All rights reserved. 

P E R S P E C T I V E S

528 | JULY 2011 | VOLUME 11	  www.nature.com/reviews/cancer

© 2011 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/nrc/journal/v11/n7/suppinfo/nrc3081.html


Nature Reviews | Cancer

a b

c

Unfolded proteinsStress

Pe
rc

en
ta

ge

0
0

100 200 300

20

40

60

80

100

Time (h)

Time (h)

0
0

1 2 3 4 5

25

50

75

100

ChaperonesTA

PERK ATF6 IRE1

Stress = 10
UPTotal

UP

ChapTotal

Time (min)

Time (min)

Time (min)

Pe
rc

en
ta

ge

0
0

100 200 300

20

40

60

80

100

Stress = 10

%
 X

BP
1 

m
R

N
A

 s
pl

ic
ed

0 2 6
0

10

20

40

60

80

100

Pe
rc

en
ta

ge

0
0

200 400 600

20

40

60

80

Stress = 5

IRE1Active

PERKActive

IRE1Active

PERKActive

%
 C

le
av

ed
 A

TF
6

%
 P

ER
K

 p
ho

sp
ho

ry
la

te
d

%
 X

BP
1 

m
R

N
A

 s
pl

ic
ed

IRE1
PERK
ATF6

the molecular regulatory network under 
consideration is large, complex and inter-
connected and when we are dealing with 
quantitative aspects of signalling and con-
trol91. A well-crafted mathematical model 
allows us to integrate crucial information 
about the genetics, molecular biology and 
physiology of cancer cells into a quantitative 
hypothesis that is amenable to computer 
simulation, mathematical analysis and 
detailed comparison to experimental data. 
By computing the behaviour of the model 
under various experimental conditions 
and comparing these simulations to the 
observed behaviour of cells, we can deter-
mine whether our hypothetical molecular 
mechanism is sufficient to account for the 
known behaviour of cells. If and when our 
model passes this first test (‘post-diction’), 
we can use it to predict the behaviour of 
cells under novel experimental conditions, 
and use these quantitative predictions to test 
the efficacy of the model. Even when mod-
els are not in full agreement with experi-
ments, we can be confident that the problem 
is in some part of the model rather than in 
faulty reasoning about its consequences. 
Indeed, the model can help us to track down 
the origin of the problem (or problems) and 
consider alternative hypotheses.

Mathematical modelling of intracellular 
control systems related to breast cancer 
development, although still in its infancy, is 
beginning to provide some useful insights. 
For example, a sophisticated model of p53 
signalling in MCF‑7 cells successfully pre-
dicted a novel role for WIP1 (also known  
as protein phosphatase 1D) in a negative 
feedback loop from p53 to an upstream 
kinase in the DNA damage signalling path-
way92. A recent model of the ERBB2–ER 
signalling network identified novel drug 
targets for trastuzumab-resistant cells93.  
A dynamic model of combinatorial cancer 
therapy suggested promising treatment 
strategies that were subsequently verified 
experimentally94.

In this Opinion article, we have presented 
a roadmap for the mathematical modelling 
component of an integrative, systems biology 
of endocrine responsiveness in ER+ breast 
cancer. The hard work is yet to be done: 
researchers will need to formulate and verify 
models, estimate kinetic parameters, make 
non-obvious predictions and test them by 
quantitative experimental measurements. 
Is it just a matter of time before an effective, 
integrated model of regulatory networks in 
breast cancer cells is informing the next wave 
of experiments and therapies? Successful 
ODE models of cell cycle regulation, growth 

factor signalling, programmed cell death and 
the UPR suggest that there are no fundamen-
tal barriers to accurate, predictive models of 
complex control systems in mammalian cells. 

However, effective modelling is hampered by 
many substantial genetic and phenotypic dif-
ferences among different types of mamma-
lian cells. Extending models to cancer cells, 

Figure 5 | The unfolded protein response in mammalian cells. a | ‘Wiring’ diagram for the 
unfolded protein response (UPR). The UPR is a coordinated cellular programme that is induced by 
the accumulation of unfolded and misfolded proteins in the lumen of the endoplasmic reticulum73. 
Increased levels of unfolded or misfolded proteins are brought down by chaperones, foldases, oxi-
doreductases, glycosylases and proteases (we refer to all of these components simply as chaper-
ones). As unfolded proteins pull chaperones away from the lumenal domains of PRKR-like 
endoplasmic reticulum kinase (PERK; also known as EIF2AK3), activating transcription factor 6 
(ATF6) and inositol-requiring protein 1 (IRE1; also known as ERN1), these three proteins upregulate 
the expression of certain genes that reduce the stress and increase the protein folding capacity of 
the endoplasmic reticulum. b | Numerical simulations computed from the mathematical model in 
Supplementary information S4 (text). At time 0, with the model at a stable resting state, a stress of 
10 (arbitrary units) is added to the differential equations, and the response of the system is plotted 
in terms of total unfolded protein (UP), total chaperone, and protein species not bound to chaper-
ones (IRE1

Active
 and PERK

Active
). The response to a stress of 5 arbitrary units applied at time 0 is also 

shown for IRE1
Active

 and PERK
Active

. c | Experimental verification in non-cancerous cells. Time courses 
of the three stress sensors after treatment of Chinese hamster ovary (CHO) cells with 10 μg ml–1 of 
tunicamycin to induce protein misfolding108. Time course of IRE1 activity (assayed as % splicing  
of X-box-binding protein 1 (XBP1) mRNA) in human embryonic kidney 293 cells treated with  
5 μg ml–1 of tunicamycin109. TA, translation attenuation. The top graph in part c is reproduced,  
with permission, from REF. 108 © (2006) American Society for Cell Biology. The bottom graph in  
part c is reproduced from REF. 109.
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which are notoriously unstable genetically, 
will be even more difficult. High-throughput 
data collection and analysis will be helpful 
in identifying important differences among 
cell types and between normal cells and their 
cancerous derivatives95–97.

Despite the seeming wealth of data 
on molecular mechanisms that control 
mammalian cell proliferation and stress 
responses, there is often a distinct lack 

of reliable, quantitative measurements of 
these mechanisms under conditions that 
are relevant to model formulation and test-
ing. Another impediment to modelling 
intracellular control systems stems from 
the fact that the behaviour of populations 
of cells (for example, their graded response 
to drug treatment) may not reflect the 
behaviour of single cells (in this example, 
an all-or-none decision in response to the 

drug). At present, modellers are still strug-
gling with how best to cope with all of these 
competing issues.

In addition, there are other relevant 
theoretical considerations that we have 
not described in this article. First, realistic 
models of molecular regulation must take 
into account the compartmentalization 
of eukaryotic cells. Second, the restricted 
number of genes, mRNAs and protein mol-
ecules in a single cell generate unavoidable 
stochastic fluctuations in molecular control 
networks. Intracellular information-
processing systems must be robust to 
these fluctuations in most circumstances, 
although in some circumstances these 
fluctuations may be exploited to generate a 
range of possible outcomes (‘bet-hedging’). 
Third, our models only bridge the scales 
from molecular networks to cell physiol-
ogy. Breast tumours exist in a complex 
microenvironment that affects the dynamic 
signalling within and among cancer cells. 
Modelling these effects adds new layers of 
complexity. Other kinds of mathematical 
models are needed to describe how tumour 
cells are organized into multicellular tissues 
that interact with the extracellular matrix, 
recruit vasculature and eventually metas-
tasize to distant parts of the body98–100. 
Models at these higher scales are begin-
ning to be integrated with molecular-level 
descriptions of intracellular control systems 
(for example, the cell cycle) and of intercel-
lular communication (for example, WNT 
signalling)101,102.

We expect that these modelling chal-
lenges can be overcome and that a new 
generation of mathematical models will 
provide new insights into the molecular 
foundations of endocrine responsiveness in 
breast cancer. 
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Figure 6 | Crosstalk between oestrogen receptor and epidermal growth factor signalling 
pathways. a | ‘Wiring’ diagram for crosstalk between oestrogen receptor (ER) and growth factor 
(GF) signalling. A growth factor receptor (GFR) and its downstream signalling network are sup-
pressed by ligand-dependent ER signalling (‘ER classic’) but promoted by ligand-independent  
ER signalling (‘ER non-classic’). Increased GF signalling after oestrogen (E2) withdrawal can shift ER 
from classical to non-classical signalling. GF signalling can upregulate its own activity. b | Signal–
response curve for GFR as a function of E2. Differential equations describing the wiring diagram 
are provided in Supplementary information S5 (text). The steady-state activity of GFR is plotted as 
a function of [E2] in the growth medium (from 0 to 5 pM). At any given [E2] in this range, a cell may 
express a low or high level of GFR (upper and lower solid lines; the middle dashed line indicates a 
branch of unstable steady states). c | Experimental evidence for crosstalk between ER and the 
epidermal growth factor (EGF) pathway88. The fluorescent activated cell sorting (FACS) plots in 
part c  show a bimodal distribution of ERBB2 expression in a monoclonal culture of 
ERBB2‑overexpressing MCF‑7 cells induced by a change in [E2]. The plots show the number of cells 
expressing a certain abundance of ERBB2 as detected by fluorescent antibody. Cells are initially 
grown on charcoal-stripped fetal calf serum (FCS) for 5 weeks (or longer) to deplete them of E2, 
resulting in a single population of cells expressing high levels of ERBB2 (top plot). Replacing char-
coal-stripped FCS with FCS (FCS contains E2) leads to the emergence over time (shown at 5 weeks, 
3 months and 4 months) of a second population of cells expressing a low level of ERBB2 (indicated 
by the peak on the left). Similar results have also been observed in EGF-overexpressing MCF‑7 
cells87. d | Model simulation of crosstalk between ER and ERBB2. In Supplementary information S5 
(text), noise terms are added to the differential equations to take stochastic effects into account. 
Two thousand cells were grown in the absence of E2 for 3.3 weeks, which resulted in a single popu-
lation of cells expressing high levels of ERBB2 (top plot). Adding in FCS (corresponding to 5 pM of 
E2) leads to the emergence over time (shown at 5 weeks, 3 months and 4 months) of a second popu-
lation of cells expressing a low level of ERBB2 (indicated by the peak on the left). The pattern of 
ERBB2 expression is similar to the results shown in panel c. Part c is reproduced, with permission, 
from REF. 88 © (1995) Springer.
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