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The DNA replication–division cycle of eukaryotic cells is controlled
by a complex network of regulatory proteins, called cyclin-depen-
dent kinases, and their activators and inhibitors. Although compre-
hensive and accurate deterministic models of the control system
are available for yeast cells, reliable stochastic simulations have not
been carried out because the full reaction network has yet to be
expressed in terms of elementary reaction steps. As a first step in
this direction, we present a simplified version of the control sys-
tem that is suitable for exact stochastic simulation of intrinsic noise
caused by molecular fluctuations and extrinsic noise because of
unequal division. The model is consistent with many characteristic
features of noisy cell cycle progression in yeast populations, includ-
ing the observation that mRNAs are present in very low abun-
dance (�1 mRNA molecule per cell for each expressed gene). For
the control system to operate reliably at such low mRNA levels,
some specific mRNAs in our model must have very short half-lives
(<1 min). If these mRNA molecules are longer-lived (perhaps 2
min), then the intrinsic noise in our simulations is too large, and
there must be some additional noise suppression mechanisms at
work in cells.

cyclin-dependent kinase � gene expression � network dynamics �
stochastic model � mRNA turnover

To reproduce, a cell must make new copies of all of its
components and then divide in half, partitioning every

component more or less evenly to its two progeny, so that
each newborn cell gets all of the machinery and information
necessary to repeat the process. In particular, the genetic in-
formation of the cell must be precisely replicated and accu-
rately partitioned at each division, so that each progeny cell
gets one and only one copy of every chromosome. Further-
more, the DNA replication–division cycle must be coordi-
nated with the growth cycle (the doubling of all other compo-
nents of the cell) so that, on average, a cell lineage divides in
half for each doubling of cell mass.

Progression through the eukaryotic cell cycle (Fig. 1A) is
governed by a complex network of interacting genes and pro-
teins that controls the activity of a family of cyclin-dependent
protein kinases (CDKs) (1). When CDK activity is low, the
cell is in a growing state (G1 phase) not yet committed to
DNA replication and division. When CDK activity rises, the
cell initiates DNA synthesis (S phase). G2 phase is the gap
between the end of S phase and the beginning of M phase
(mitosis � chromosome partitioning and nuclear division).
CDK activity is destroyed as cells exit mitosis and undergo
cell division. The newborn daughter cells are in G1 phase,
with unreplicated DNA molecules and low CDK activity.
They are also approximately half the size of their ‘‘mother’’
cell when she underwent division. The CDK control system is
responsible for the alternation of DNA synthesis and mitosis
and for the balance of growth and division.

Although the cell division cycle is very precise and robust
in many aspects, it is sloppy in other details (Fig. 1 B and C)
(2). In a steady-state population of proliferating cells, al-
though the distribution of cell size is time-independent and

stable, the distribution of cell size at any particular stage of
the cycle (e.g., at birth or at division) is quite variable. For
example, for fission yeast cells, CVsize@division � (standard de-
viation of size at division)/(mean size at division) � 7%. Fis-
sion yeast cells are even less fussy about the time they need
to complete the cell cycle: CVage@division � 14%. It is fair to
say that a dividing cell takes pains to ensure that its DNA is
accurately replicated and partitioned between its two progeny,
but it is not particularly concerned with how long this process
takes to do correctly, or (consequently) how large it is at divi-
sion. Size fluctuations can be corrected in the next genera-
tion; indeed, in yeast cells, there is a strong negative correla-
tion between size at birth and subsequent cell cycle time (3).

These correlations are evidence for a size control (or size
threshold) operating at some critical transition in the cell cy-
cle. Cells that are larger (or smaller) than average at birth
take a shorter (or longer) time to grow to the threshold size
for commitment to the DNA replication–division cycle and
hence have a shorter (or longer) than average cycle time. In a
classic article, Koch and Schaechter (4) worked out the impli-
cations of this idea of a size threshold for the G1/S transition
[see supporting information (SI) Appendix]. For ‘‘sloppy size
control’’ models under very general conditions, they showed
that CVage@division � 2 � CVsize@division. The Koch–Schaechter
model demonstrated that much of the variability of cell cycle
properties can be explained by inequities in the cell division
process and a size threshold for the G1/S transition. They also
assumed some variability in the time of progression through
S, G2, and M phases. This variability is caused, presumably,
by random fluctuations in the molecular machinery that coor-
dinates and executes these events. Given the small size of a
yeast cell (�30 fL) and the low concentration of regulatory
proteins (�50 nM), the total number of molecules of each
regulatory protein in a cell is limited (�1,000), and intrinsic
molecular fluctuations are not only inevitable but also large
enough (CVmolecular noise � N �1/2 � 3%) to interact signifi-
cantly with extrinsic f luctuations (e.g., CVunequal division � 5%).
Even more significant is the recent discovery that the average
number of specific mRNA molecules per yeast cell is very
small: 0.5–5 molecules per cell (Table 1). At such low num-
bers, molecular fluctuations must be very large indeed, and
they are likely amplified many-fold in going from mRNA to
protein (5). In the face of such potentially large fluctuations,
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it is hard to understand how the CDK control system can
function with any reliability.

It is our intention in this article to explore the relative con-
tributions of intrinsic and extrinsic noise sources to variability
in cell cycle properties of yeast and other eukaryotes. To be
reliable, the model must capture the basic dynamic features of
the CDK control system (Table 2), it must be formulated in
terms of elementary chemical reactions so that the effects of
molecular noise can be calculated accurately, and it must op-
erate in the experimentally measured ranges of protein num-
bers and mRNA numbers. The model must have a mecha-
nism for size regulation, and it must account for cell growth
and sloppy cell division. By turning on and off the various
sources of noise in the model, we will investigate the relative
roles of protein fluctuations, mRNA fluctuations, and uneven
division.

There have been several earlier studies of noise effects on
cell cycle progression. Starting from ordinary differential
equation models of yeast cell cycle controls, Sveiczer et al. (6,
7) and Steuer (8) derived stochastic, Langevin-type equations
that superimposed white noise on an underlying deterministic
system. Mura and Csikasz-Nagy (9) took a different approach,
by using Gillespie’s algorithm to simulate stochastic evolution
of Chen’s deterministic model (10) of the budding yeast cell
cycle. In all of these cases, although one may question the

validity of the stochastic approach to compute intrinsic noise
in the control system correctly, the authors drew interesting
conclusions about certain mutant cells where stochastic f luc-
tuations play important roles in their aberrant behavior.
Zhang et al. (11), Braunewell and Bornholdt (12), Ge et al.
(13), and Okabe and Sasai (14) have presented stochastic
models of the yeast cell cycle based on a deterministic Bool-
ean model from Li et al. (15). The main concern of all of
these authors was the robustness of cell cycle progression in
the presence of intrinsic and extrinsic sources of noise. None
of them compared their models to observed statistics of cell
cycle properties in wild-type or mutant cells.

The Model
Our model of the CDK control system (Fig. 2) is based on ear-
lier work by Sabouri-Ghomi et al. (16), who ‘‘unpacked’’ a phe-
nomenological model from Tyson and Novak (17). The Tyson–
Novak model is based on a bistable switch, created by the
antagonism between the complex CycB–Cdk1 (called X) and the
complex Cdh1–APC (called Y). Active Y catalyzes the degrada-
tion of CycB (thereby destroying X), whereas active X phosphor-
ylates Cdh1 (thereby inactivating Y). In G1 phase, the switch is
in the OFF position (i.e., X OFF and Y ON), and it flips to the ON
position at the G1/S transition. Tyson and Novak modeled the
phosphorylation and dephosphorylation of Y by nonelementary
(Michaelis–Menten) rate laws. To prepare the Tyson–Novak
model for stochastic simulations, Sabouri-Ghomi et al. (16) un-
packed the Michaelis–Menten steps into elementary reactions
(substrate � enzyme 7 complex 3 enzyme � product), and

Table 2. Principal molecular players in the CDK control system

Cdk1 A protein kinase, phosphorylates specific proteins
involved in the initiation of DNA synthesis and mitosis.

Cyclin B A partner of Cdk1, activates Cdk1 and directs its kinase
activity to specific substrates.

APC An E3 ubiquitin-conjugating enzyme, labels specific
proteins for degradation by the proteasome.

Cdc20 A partner of APC, directs its labeling activity to specific
proteins.

Cdh1 A partner of APC, similar to Cdc20
Cdc14 A protein phosphatase, reverses the phosphorylation

reactions catalyzed by Cdk1

X, CycB–Cdk1; Y, Cdh1–APC; Z, Cdc20 and Cdc14.
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Fig. 1. Cell cycle statistics. (A) Schematic illustration of a cell lineage undergoing growth and division. Each cell is born at a particular size (Sbir) and divides at
some larger size (Sdiv). The birth size of a daughter cell is some fraction p of the division size of its mother, where p is a random number drawn from a normal
distribution with mean 0.5 and 5% CV. The cell cycle time (Tcc) is the time between cell birth and division; it may also be called cell age at division. The interdivision
period is divided into four phases, depending on the state of the chromosomal DNA: G1 (unreplicated chromosomes), S (replicating chromosomes), G2 (replicated
chromosomes), M (dividing chromosomes). During G1 phase, CDK activity is low, whereas CDK activity is high during S � G2 � M phases. (B and C) Histograms
for cell length (B) and age (C) in a sample of dividing fission yeast cells. Data were redrawn from Miyata et al. (23). Fission yeast cells are rod-shaped; they grow
in length only at a fixed radius, so cell length is a proxy for cell size. For this yeast cell sample, mean size at division � 13.4 �m (CV � 7.5%), and mean age at
division � 116 min (CV � 13.8%).

Table 1. Numbers of molecules (per haploid yeast cell) for
several cell cycle genes

Gene mRNA*

Protein

Ref. 24 Ref. 25

CDC28 2.2 6,700 6,000
CLN2 1.2 1,300 1,000
CLN3 1.1 ND† 110
CLB2 1.1 340 500
CLB5 0.9 520 390
SWI5 0.8 690 ND
MCM1 1.6 9,000 ND
SIC1 1.9 770 100
CDC14 1.0 8,500 ND

*mRNA data are from http://web.wi.mit.edu/young/expression/transcrip-
tome.html.

†ND, not done.
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their article should be consulted to see how this unpacking must
be done to maintain bistability of the switch.

The Sabouri-Ghomi model deals only with the G1/S transi-
tion (X OFF 3 X ON) and how it is triggered by an increase
in cell size. To model a complete cell cycle, we need a mecha-
nism for the M/G1 transition (X ON 3 X OFF). Tyson and
Novak (17) attribute this transition to the action of a pair of
proteins, Cdc20 and Cdc14. High activity of X (CycB–Cdk1)
in M phase promotes the synthesis and activation of Cdc20,
which in turn promotes the activation of Cdc14 (a phospha-
tase). Cdc14 dephosphorylates and activates Cdh1–APC (Y).
In the Tyson–Novak model, Cdc20 and Cdc14 are lumped
together into a single variable Z, and the production rate of
Z is given by a Hill function (another phenomenological, non-
elementary rate law), depending on the activity of X. In the
same spirit as Sabouri-Ghomi et al., we unpack the Hill func-
tion in terms of a transcription factor, F, that is phosphory-
lated by X and then forms a dimer (FP)2, that binds to and
up-regulates expression of the gene encoding Z. Each step in
the unpacked mechanism is assumed to be elementary (at the
level of detail appropriate to this model), with kinetics given
by the law of mass action.

The model of the CDK control system that we use here is
given in full detail in Fig. 2. The mass action rate laws corre-
sponding to this mechanism are written in full in Table S1 in
the SI Appendix, and the rate constant values we employ are
given in Table S2 in the SI Appendix. Details on how we carry
out deterministic and stochastic simulations of the model are
provided in the SI Appendix, with programs provided in Data-
set S1, Dataset S2, and Dataset S3. Our full model has sev-
eral additional features worth highlighting. (i) All variables
are given as total numbers of molecules per cell, e.g., NX �
total number of ‘‘free’’ (uncomplexed) molecules of X per
cell. (ii) We take into account the continuous increase in cell

volume during the cell cycle and the attendant dilution of mo-
lecular concentrations in the cell. (iii) We include synthesis
and degradation of all proteins in the model, to maintain,
where appropriate, the Tyson–Novak assumption of constant
total concentrations of species like Y and F. Protein synthesis
rates are proportional to cell volume, V(t), because the num-
ber of ribosomes in a cell increases as the cell grows. (iv) We
include mRNAs for all primary gene products in the model.
We have chosen rate constant values to give absolute num-
bers of protein and mRNA species in decent agreement with
experimental measurements. Because thousands of copies of
each protein species must be made from only �1 specific
mRNA molecule per cell during a 100-min cell cycle, we must
assume very fast translation rates (20–50 protein molecules
per mRNA molecule per min). The polypeptide chain elonga-
tion rate in yeast cells is �10 aa per s (18), so it takes �1
min to make a molecule of cyclin B. With 10–20 ribosomes
per mRNA, we can get close to the translation rates assumed
in the model. (v) The synthesis rate of cyclin B mRNA (spe-
cies MX in Fig. 2) is assumed to be proportional to cell size.
This assumption makes the total amount of CycB (relative to
the total amount of Cdh1) increase as the cell grows, which
induces the G1/S transition when the cell reaches a threshold
size. This is the basis of ‘‘size control’’ in the model.

Results
Deterministic Simulation. To establish a baseline, we first carry out
a completely deterministic simulation (Fig. 3 A and B) of the
model with precise division in half. There is no variability
whatsoever (Table 3, row 1).

In Fig. 3C we plot a one-parameter bifurcation diagram for the
deterministic CDK control mechanism. For small values of V, the
CDK control system has a unique stable steady state, corresponding
to G1 phase of the cell cycle (X OFF, Y ON). For V near 25 fL, the

YYP

X:Y

X

Y:X

Y :XP

Z

M

M

M

M

MH

F F

(F ) X:Y
Y:X
Y :XC

CG

F

H

Z

X

Y

Z:Y

P

P

P

2

GF +

X +
X +
X +

P

Pk

k
cat
yx

k

k

k

k
k
k

k

k

kk

k
k

k

k

k

k

k
k

k

k

k

k
k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k
k

k
k

k
kcat

cat

cat

xy

ypx

zyp

smxV

dmx

dx

sx

sy

dmy

smy

dy

dydy

dy

dy

dy

yxf

yxr

xyf

xyr

by

zypf

zypr

ypxf

ypxr

dz

sz
dmz

smz

sf

smf

dmf

df

pf

pr

dmh

smh

sh

kdh

df

df2

2 df

dim diss

cf

cr

Fig. 2. Molecular mechanism regulating the activity of cyclin B-dependent protein kinase. X, CycB–Cdk1; Y, Cdh1—APC; YP, phosphorylated (inactive) Y; Z,
Cdc20 and Cdc14 (composite species); G, gene encoding Z; F, transcription factor controlling the expression of G; FP, phosphorylated form of F; H, enzyme that
removes phosphate group from FP; (FP)2, dimeric form of F; C, Z gene bound to (FP)2 and actively transcribing MZ, the messenger RNA for Z; MX etc., messenger
RNAs for all other primary gene products in the model; four small circles, products of protein and mRNA degradation reactions. A T-shaped arrow with balls on
the cross-bar indicates a reversible binding reaction. (Inset) Additional degradation reactions necessary to maintain approximately constant concentrations of
total Y and F proteins during the cell cycle. We assume that the complex YP–X has enough CDK activity to drive DNA synthesis but not mitosis; only the free form
of X is sufficient to drive the cell into mitosis.
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control system undergoes a homoclinic bifurcation to stable, large-
amplitude, limit cycle solutions. [At very large size, V � 74 fL, the
limit cycles are lost by another bifurcation to a stable M phase state
(X ON, Y OFF) of the cell cycle.] The narrow region of three steady
states (23 fL � V � 25 fL) is created by the antagonistic relationship
between CycB (X) and Cdh1 (Y). The limit cycle oscillations are
driven by the negative feedback loop, whereby X up-regulates Z,
which activates Y, which destroys X. The homoclinic bifurcation is
a confluence of a saddle-node bifurcation of the antagonistic
feedback loop with an infinite-period closed orbit of the negative-
feedback loop.

In Fig. 3C we have superimposed on the bifurcation diagram
a ‘‘cell cycle trajectory,’’ which is created by plotting (paramet-
rically in t) the curve for XT(t) from Fig. 3A against the curve for
V(t) from Fig. 3B. Fig. 3C shows how progression through the cell
cycle in our model is related to the homoclinic bifurcation that
separates the G1 stable steady state from the S � G2 � M stable
limit cycle. The newborn cell (�15 fL) is so small that the only
stable attractor for the CDK control system is the G1 steady
state. Hence, the newborn cell waits in G1 phase (with unrep-
licated DNA) until it grows large enough to surpass the homo-
clinic bifurcation point. At that point, the G1 stable steady state

disappears (by coalescing with an unstable saddle point) and is
replaced by a stable limit cycle. The CDK control system is
attracted to the limit cycle (slowly at first, because this is a
homoclinic bifurcation). As Cdh1 is inactivated, the level of CycB
rises, and the cell enters S phase. At first, CycB is mostly
associated with phosphorylated Cdh1 (YP–X), but eventually the
CycB level swamps the supply of Cdh1. Free CycB then drives the
cell into mitosis and activates the transcription factor (F) for
Cdc20 (Z). As Z increases, it activates the phosphatase (Cdc14)
that dephosphorylates Cdh1 (YP 3 Y). Active Cdh1 now
destroys CycB, and this is the signal for the cell to divide. Cell
division corresponds to the abrupt down-jump from V � 30 fL
to 15 fL on the cell cycle trajectory.

The deterministic model exhibits the robust general properties
that we expect of cell cycle progression. S phase and M phase
alternate because the cell must enter S phase (the initial rise of
XT after passing the homoclinic bifurcation point) before it can
enter mitosis (when free X, uncomplexed with YP, finally
accumulates). Then the cell must destroy X and return to G1
phase before it can initiate another round of DNA synthesis.
Also, this mechanism automatically ensures that the cell cycle
time is equal to the mass doubling time. Because the cell divides
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Fig. 3. Deterministic simulations of the model. (A) Time courses for total amounts of cyclin B protein (XT, black line), Cdc20 protein (ZT, red line), and
unphosphorylated Cdh1 protein (Ŷ blue line). (B) Time courses for free (uncomplexed) X (red line), YP–X (gray line), and cell volume (blue line). (C) The figure
8-shaped curve (red) is a cell cycle trajectory created by plotting, parametrically in t, the curves for XT(t) and V(t) from A and B, respectively. The small arrows
indicate the direction of motion around this trajectory. Cell division is indicated by the abrupt jump from V � 29.8 to V � 14.9, which is triggered when Ŷ increases
above 1,200 molecules. The S-shaped curve (blue) is a one-parameter bifurcation diagram (computed by using XPP-AUTO) for steady-state solutions of the
molecular control system, treating cell size (V) as a bifurcation parameter. Solid line, stable steady state; dashed line, unstable steady state. The two black lines
above and below the unstable steady-state curve indicate the presence of stable limit cycle oscillations for V � 25; the Upper (Lower) curve indicating the
maximum (minimum) value of XT on the limit cycle for a particular value of V. (Inset) Period of limit cycle oscillations as a function of cell size. The control system
generates oscillations by homoclinic (infinite period) bifurcations at V � 25 and V � 74.

Table 3. Statistical properties of simulations

Row Type of noise

Cycle time, min Size at division, fL Size at birth, fL Avg. no. of
Cdc20 mRNA

molecules

Avg. no. of
CycB protein

moleculesMean CV, % Mean CV, % Mean CV, %

1 Deterministic 115.5 0 29.9 0 14.9 0 0.48 1,054
2 Full stochastic 115.8 13.8 29.2 8.4 14.6 9.8 0.52 1,062
3a* Only extrinsic 116.1 4.9 30.0 1.9 14.9 5.3 0.48 1,051
3b† 116.1 5.1 29.9 2.0 14.9 5.3 0.46 1,037
4 Only intrinsic 115.5 13.0 29.1 8.2 14.5 8.2 0.51 1,040
5‡ Variance (13.0)2 � (5.1)2 � (13.8)2 (8.2)2 � (2.0)2 � (8.4)2 (8.2)2 � (5.3)2 � (9.8)2

6a§ �1/2 � 120 s 115.5 32.8 26.3 21.2 13.1 21.8 0.54 883
6b§ �1/2 � 60 s 115.7 24.9 27.7 15.0 13.8 15.8 0.52 986
7a¶ �X,Y � 12,12 s 115.7 14.4 29.6 9.1 14.8 10.4 0.58 1,067
7b¶ �X,Y � 12,120 s 115.3 23.7 29.3 15.3 14.7 16.2 0.49 1,054

*Unequal division and strictly proportional distribution of protein and mRNA.
†Unequal division and binomial distribution of protein and mRNA molecules.
‡(CVrow4)2 � (CVrow3b)2 � (CVrow2)2.
§Varying half-life of constitutive mRNAs; compare with row 2, where �1/2 � 12 s.
¶Half-lives of mRNAs for species X and Y, �1/2 � 300 s for species MZ, MF, and MH.
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in half at the M/G1 transition, the time between successive G1/S
transitions (passing the homoclinic bifurcation point, at the
threshold cell size) must be exactly the time needed for cell size
to increase 2-fold.

Fully Stochastic Simulation. Next, we compute a fully stochastic
simulation of the model with intrinsic noise at both protein and
mRNA levels and extrinsic noise caused by uneven division and
binomial distribution of protein and mRNA molecules to sister
cells. A few typical cell cycle trajectories are illustrated in Fig. 4A,
and their projections onto the deterministic bifurcation diagram
are plotted in Fig. 4C. Although progression through the cell
cycle is now quite noisy, it still maintains its association with the
homoclinic bifurcation, on which depend the fundamental,
robust characteristics of the cell cycle.

The statistical properties of a large ensemble of simulated
cells, summarized in Table 3 (row 2), reflect the characteristic
sloppiness observed in populations of yeast cells (distributions of
cycle time and sizes at division). The model is also in accord with
typical average numbers of proteins and mRNAs per cell.

Relative Effects of Intrinsic and Extrinsic Noise. In Table 3 we also
report the statistical properties of the model in the case of
extrinsic noise only (row 3) or intrinsic noise only (row 4). In row
3, we simulate the CDK control system deterministically but
allow for uneven division (CVdiv � 5%). The statistics in this case
are quite similar whether or not molecules are distributed
binomially to sister cells at division. In row 4, we simulate the
CDK control system stochastically, assuming that cells divide
precisely in half and distribute proteins and mRNAs evenly to
sister cells. By comparing the statistical properties in rows 2, 3,
and 4 of Table 3, we see that for most indicators, Varintrinsic �
Varextrinsic and Varfull � Varintrinsic � Varextrinsic (Table 3, row 5);
that is to say, the two sources of noise contribute independently
to the observed variability of cell cycle properties, with intrinsic
noise being the primary source of variability.

Role of mRNA Fluctuations in Intrinsic Noise Levels. Next we inves-
tigate more closely how the measures of cell cycle variability
depend on the turnover rate of mRNAs. According to the
measurements of Holstege et al. (19), the mRNAs for cell cycle
control genes in yeast cells have half-lives of 10–20 min. If we use
such long half-lives for the mRNAs in our model, then the
intrinsic noise of the model is unacceptably large. The results in
Table 3, row 2, are computed for a half-life of MZ of �5 min (kdmz
� 0.15 min�1) and all other mRNAs with a half-life of 0.2 min.
We tried many different values for the half-life of these consti-
tutive mRNAs. For much longer half-life (e.g., 1 or 2 min; Table

3, rows 6a and 6b), the intrinsic noise in the control system is
much too large. To keep the noise at an acceptable level, it is
necessary that the mRNAs for species X and Y turn over rapidly
(half-life � 0.2 min), whereas species Z, F, and H can have
longer-lived mRNAs (5 min) (see Table 3, row 7a).

Discussion and Conclusion
We have proposed a model of eukaryotic cell growth and di-
vision that realistically incorporates the major sources of vari-
ability in cell cycle progression. Intrinsic noise is reflected in
a simple model of the CDK control system, based on a bist-
able switch between Cdh1–APC (a stabilizer of G1 phase of
the cell cycle) and CycB–Cdk1 (the driving signal for S � G2
� M phases of the cell cycle). The switch from G1 phase into
S phase is controlled by growth to a threshold cell size, and
the switch from M phase back to G1 is controlled by a nega-
tive feedback loop involving the ‘‘mitotic exit’’ proteins,
Cdc20 and Cdc14. The interactions of the CDK control sys-
tem are given by elementary chemical reactions that can be
simulated accurately by Gillespie’s stochastic simulation algo-
rithm. Rate constant values are assigned to give realistic vari-
ations in numbers of molecules of each species during the cell
cycle. mRNAs are included in the model so that we may
study the effects of low mRNA numbers per cell and of
mRNA turnover.

The interdivision time of yeast cells is known to be very
sensitive to birth size (3). Large newborn cells have unusually
short cell cycle times, whereas small newborn cells are unusu-
ally ‘‘old’’ at division. Hence, a major source of variability in
cell cycle times is the distribution of cell sizes of newborn
cells. This distribution reflects the variability of division sizes
of mother cells and the unevenness of the cell division pro-
cess itself. Uneven division is extrinsic to molecular fluctua-
tions of the cell cycle control system, but variability of size at
division depends in large part on intrinsic noise in the control
system. A second source of extrinsic noise is the unequal par-
titioning of protein and mRNA molecules to sister cells at
division. This effect is modeled as a binomial distribution pro-
cess.

By studying the model under various circumstances, we
reach a few general conclusions. Intrinsic and extrinsic
sources of noise are mostly independent in their effects, and
they both contribute significantly to the observed variability
of cell cycle progression. Nonetheless, intrinsic molecular
fluctuations in the control system are considerably noisier
than extrinsic inequities in the division process. By far, the
greatest source of intrinsic noise comes from low numbers of
mRNA molecules reported for yeast cells, 0.5–5 mRNAs per
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expressed gene per cell (19). To limit the effects of mRNA
fluctuations in our model, we have assumed that the turnover
of cyclin B and Cdh1 mRNAs is very rapid. In this case,
mRNA-directed protein synthesis is effectively time-averaged
and not as noisy as might be expected. To fit our model to
the typically observed variability of yeast cell cycles, we are
compelled to assume that �1/2 � 12 s for these two mRNAs,
much shorter than any measured mRNA half-lives. Indeed,
the rate of translation in yeast cells is �10 aa per s (18), so
an mRNA molecule has to live at least 1 min to direct the
synthesis of a protein such as cyclin B. It is hard to reconcile
all of these facts, unless cells employ some other mechanism
of noise suppression that is not evident in our simple model.

Fluctuations in gene expression have been studied by many
authors (5, 20), who have shown that the CV for protein
number (NP) is strongly dependent on fluctuations in mRNA
number (NM), according to the elegant equation: (CVP)2 �
�NP��1 � �M/(�P � �M)�NM��1, where �…� denotes
‘‘mean,’’ and �M and �P are the half-lives of mRNA and pro-
tein. In our case, �NP� � 1,000 and �NM� � 1, which ex-
plains why, to keep CVP � 10%, we must choose �M � �P/
100. More sophisticated models of gene expression predict
that protein noise may be reduced by periodic transcriptional
‘‘bursting’’ and mRNA ‘‘senescence’’ (20), but the effects are
modest (2-fold, at best), so they cannot account for the noise
suppression we seek.

In a recent article, most directly related to our work, Ok-
abe and Sasai (14) studied a stochastic model of the yeast cell
cycle, including extrinsic f luctuations at cell division and in-
trinsic f luctuations in gene activation and mRNA abundances.
They assumed a 5-min half-life for mRNAs and very low
abundances (10–100 molecules) of proteins. They found that
intrinsic noise in mRNA levels is non-Poissonian and much
larger than noise in protein levels, which they attributed to
the role of checkpoints in governing progression through the
cell cycle. It is difficult to compare our approach with theirs
because we do not include checkpoints explicitly in our
model, and they do not compute CVs for cell size and age at
division. Hence, the mechanism of noise suppression in the
cell cycle remains unresolved.

An accurate stochastic model of the eukaryotic cell cycle
will be useful not only for addressing general questions of in-

trinsic and extrinsic variability, as in this article, but also for
making contact with the growing body of experimental stud-
ies of specific proteins in single cells by quantitative flow cy-
tometry (21) and fluorescence microscopy (22). For these
purposes, the stochastic model of the CDK control system
must be more detailed and extensive than the model provided
here. The present model keeps track of only cyclin B-depen-
dent kinase; a realistic model would require cyclin A-, cyclin
D-, and cyclin E-dependent kinases as well. Our single G1
stabilizer, Cdh1, would need to be complemented by cyclin-
dependent kinase inhibitors (CKIs) such as Sic1 (in yeast) or
p21 and p27 (in mammalian cells). The mitotic exit network
requires, in addition to Cdc20 and Cdc14, other crucial com-
ponents, such as Net1 and Polo kinase. In many cell types, it
is important to follow transcriptional regulation not only of
Cdc20 but also of cyclins and CKIs.

We are working toward the goal of a more accurate sto-
chastic model of the CDK control system, but it is no simple
task to convert successful phenomenological models, e.g.,
Chen et al. (10) for the budding yeast cell cycle, into elemen-
tary reaction mechanisms supportive of accurate, reliable sto-
chastic simulations. This article illustrates how a simple phe-
nomenological model (17) with 3 variables and 18 parameters
quickly expands into a stochastic model with 18 components
and 36 rate constants. One shudders to think what might be
required to unpack Chen’s model, with 30� dynamic variables
and 100� phenomenological kinetic constants. Nonetheless,
the challenge is clear: realistic, accurate, stochastic models of
cell cycle regulation are needed to confront quantitative mea-
surements of specific regulatory proteins and mRNAs in sin-
gle cells. We hope that this work shines some light on the is-
sues involved and the way to progress.

Note Added in Proof: Recently, Zenklusen et al. (26) have shown that
the high-throughput measurements of mRNA abundances underesti-
mate these numbers by 5-fold or more. Repeating our full stochastic
simulations with 5-fold higher mRNA abundances, we get statistical
properties similar to Table 3, row 7a, for �X � �Y � 120 s. Although these
mRNA half-lives are more reasonable, they are still 5- to 10-fold shorter
than generally accepted values (19).
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